Fascia, Keeping it Healthy (Pt 2)

By Josh Betteridge

Welcome back,

 

Hopefully we’ve absorbed a little bit about fascial structure and the importance of it for everyday function. Today we are going to discuss how we make our fascia healthy again and how to maintain its function.

There are many factors influencing fascial structure. Before we dive into that, lets recap some key points from part one:

 

1) Our fascial system is like a network of rivers, which transport mechanical stress throughout the body.
2) It’s essential for our river (ECM) to stay fresh and flowing
3) Fascia is innovated with lots of sensory detectors
4) A weak link in fascia can produce pain elsewhere due to large connections between muscles
5) Structural shape is guaranteed by a 3D tensional model, not compression or stacking.

Is my fascia ‘bad’?
There are many contributing factors that result in a structural change of fascia. Using our river analogy we can understand this in a much easier way, instead of talking to you about the role of glycosaminoglycans (If you want to impress someone, do a bit of research about GAGs).

If our river dries out, stops flowing, or the riverbank becomes weak; the transportation system is disrupted as much as the M25 in rush-hour. There is no FLOW!

The essentials to keep fascia flowing are:

A) HYDRATION

B) ALIGNED COLLAGEN

Simple. The end…

A) Unfortunately, it’s not as simple as drinking water and thinking everything’s going to work itself out. The majority of us do not consume enough water daily for fascial rehydration. It can even take up to eight weeks for your hypothalamus to secrete antidiuretic hormone (ADH) efficiently once water intake has been increased. A general rule – drink water (and only water) until your urine is clear. Even if we are drinking enough water and produce sufficient ADH, our pathways are blocked. We’ll cover this later on.

 

B) Furthermore, increased viscosity of the ECM not only occurs from lack of hydration but through ‘bad’ movements, emotional stress and poor diet. ‘Bad’ movements range from sedentary positions (refer to our sitting down article for a recap) to over-exertion in the gym – we need to find the balance of ‘correct’, varied movements.

Lets review a bit of human biology. Successful repair of a muscle is a balance between collagen synthesis and progressive exercise. We have an abundance of cells called fibroblasts which blast collagen into areas of the body where we think we need it and usually they’re right. Fibroblasts sporadically lay collagen down in certain areas and we must exercise appropriately to realign the collagen (riverbank).

 

If we DO NOT help align the collagen, our rivers become stagnant and blocked. Imagine sticks building up in a river, slowly creating a damn. This is similar to a build up in the ECM through excess collagen.

Image

I made note of the word ‘think’ because even when we are sedentary and seated for long periods of time, our bodies are in myofascial contraction – producing excess collagen, most notable in areas of shortening such as hip flexors and pec major.

 

On the other hand, if we exercise too much with lots of repetitive movements and high-load, cellular fibroblasts are going to be spraying collagen around like no tomorrow!

 

Remember your myofascial system will reinforce your daily patterns with increased collagen synthesis.

 

The photo on the right is our dehydrated, viscous, excess-collagenous, stagnant myofascial system we see in office workers right through to high-level athletes!

 

How to Hydrate your Myofascia

Drink!

Drink plenty of pure filtered water, anything else containing water such as juices, coffee and fizzy drinks will not hydrate you! Alcohol inhibits the release of ADH meaning all water goes straight through the pipes and out the other end, so when a client questioned me believing they are ‘hydrated because of the clear urine after five beers’ I felt obliged to tell them otherwise….

As your body takes in water, it distributes it around the body with certain structures prioritising absorption over others. Take our river network and apply it into a 3D structure like a sponge. If our sponge and rivers are dried out it becomes very turgid and brittle with minimal ability to absorb forces without fraying or breaking. However, if we hydrate our network of rivers within our sponge, the pliability of our sponge increases. It is able to withstand torsion, squeezing and force! (NB: A compression model would not work in this way).

Dr Guy Voyer sums up pain in relation to myofascial restrictions: “Without water there is friction between structures. Where there’s friction; there’s fire”

 

Move! 

Without movement, excess collagen will not be aligned and the pure water will not be distributed evenly through your fascial network. Fascial is a hydrodynamic tissue. Hydrodynamics is the study of liquids in motion and it’s the motion that is key to spread of hydration through tissue. Movement actually squeezes water out of our tissues (refer back to the sponge) and is then able to reabsorb fresher water (slowly removing stagnant water and replacing it with a more nutrient-dense form). Through movement, our stagnant rivers with dams are eliminated providing we have enough fluid in our system and we move correctly.

 

If our myofascia moves in only particular ways, such as isolated gym-based movement, we drive fluid out of some structures and into others, dehydrating certain parts of the myofascial chain. This predisposes us to higher levels of pain and injury.

 

Ideally, we want to produce full body movements using full myofascia links progressing to bouncing, springing and multiplanar movements such as:

Yoga, Kettlebells, Plyometrics and Olympic Lifting.

(NB. Stagnancy in myofascia leads to further chronic issues such as increased toxin levels, we’ll cover this at a later date)

Release!

I’m sure we’ve all had a sports massage at some point feeling pretty sore before, during and even after in some cases. There has been a huge increase in fascial release techniques which have greater benefits than generic sports massages. Before eating an orange, you’ll notice you roll it around in your hand and suddenly it’s easier to peel. When you’re rolling it around you’re breaking down small fascicles in the orange and allowing fluid to move around as well as increasing heat and pliability. Fascial release produces the same effect on the human body and our rivers of myofascia. Good fascial release should feel refreshing, deep and not too painful. You can even conduct this on your own using a foam roller and golf ball.

(NB: There are recent discussion’s suggesting fascial ‘release’ is not an applicable term due to high shear forces needed to ‘release’ fascia. Until more research is proven it’s a debate for another time)

 

Conclusion

 

The majority of us reading this will have some areas of discomfort and pain somewhere in the body, the good thing to know is its possible to create an entirely rehydrated fascial system over a few months with consistent movement and treatment if needed.

 

Drink well, move functionally and release! All three of these contribute hugely to reducing the viscosity of your ECM, providing a healthy environment for mechanical stress, and aligning strong, uniformed collagen.

 

Thomas Myers sums up the importance of our ECM:
“The ECM has evolved to distribute the stresses of movement and gravity while at the same time maintaining the shape of the different components of the body. It also provides the physico-chemical environments of the cells imbedded in it, forming a framework to which they adhere and on which they can move.”

So we’ve just been told that gravity, movement and chemical secretions influences ECM function. There’s no escaping those three things. Ever.

 

Cheers,

 

Josh

 

 

 

 

Buckminster-Fuller, R (1982) Synergetics: Explorations in the Geometry of Thinking (Macmillan)

Laycock, JF (2010) Perspectives on Vasopressin. Imperial College

Maffulli, N. Renstrom, P. Leadbetter, WB. (2005) Tendon Injuries. Springer

Myers, TW (2009) Anatomy Trains: Myofascial Meridians for Manual and Movement Therapists. Churchill Livingstone.

Schleip, R. (2012) Fascia: The Tensional Network of the Human Body. Elsevier.

Advertisements

One thought on “Fascia, Keeping it Healthy (Pt 2)

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s